a^2+a^2=28

Simple and best practice solution for a^2+a^2=28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+a^2=28 equation:



a^2+a^2=28
We move all terms to the left:
a^2+a^2-(28)=0
We add all the numbers together, and all the variables
2a^2-28=0
a = 2; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·2·(-28)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*2}=\frac{0-4\sqrt{14}}{4} =-\frac{4\sqrt{14}}{4} =-\sqrt{14} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*2}=\frac{0+4\sqrt{14}}{4} =\frac{4\sqrt{14}}{4} =\sqrt{14} $

See similar equations:

| 2u-u=19 | | C=1000+.75y | | t^2-22t=-45 | | 1/5r-3+2=10 | | 4.5(x-9=13.5 | | 2x-5(1-3x)=1 | | 2+5r-10r^2=0 | | 1/4r-3=22 | | 8^x=6 | | 8(y-3)=10 | | 5(x+1)=10(x+1)-5x | | (1+2x)-5(4-2x)=14 | | 5d+3.3=-7.3 | | 2/n=6/(9/11) | | 2x^2+17x=24 | | 2x^2+17x-30=54 | | 1/3r+3=21 | | 2v-16=v | | 2+2(2n-2)=5n-4 | | 4(3x-7)-3=4(x-4)+17 | | 6x-(2x+4)=2x-40 | | x+12=4x-15 | | F(x)=-(9500)×(0.65) | | 200000000000000000000000/32=x | | 4x-(9x+9)=6x+20 | | (2x+17)+13=2x+(17+13) | | 200,000,000,000,000,000,000,000/32=x | | 2y-7=13y+15 | | (x+10)+x+2x=90 | | 7x—1=10x+4 | | -12=-x-12 | | 1/4x-7=3/8x-5 |

Equations solver categories